Exercise 12

Dinosaur fossils are too old to be reliably dated using carbon-14. (See Exercise 11.) Suppose we had a 68 -million-year-old dinosaur fossil. What fraction of the living dinosaur's ${ }^{14} \mathrm{C}$ would be remaining today? Suppose the minimum detectable amount is 0.1%. What is the maximum age of a fossil that we could date using ${ }^{14} \mathrm{C}$?

Solution

Assume that the rate of mass decay is proportional to the amount of mass remaining at any given time.

$$
\frac{d m}{d t} \propto-m
$$

There's a minus sign here because mass is being lost as time increases. Change the proportionality to an equation by introducing a (positive) constant k.

$$
\frac{d m}{d t}=-k m
$$

Divide both sides by m.

$$
\frac{1}{m} \frac{d m}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln m=-k
$$

The function you have to differentiate to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln m=-k t+C
$$

Exponentiate both sides.

$$
\begin{aligned}
& e^{\ln m}=e^{-k t+C} \\
& m(t)=e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant m_{0} for e^{C}.

$$
\begin{equation*}
m(t)=m_{0} e^{-k t} \tag{1}
\end{equation*}
$$

The half-life is defined as the amount of time it takes for a sample to decay to half its mass. Recall from the previous exercise that the half-line of carbon-14 is 5730 years, so set $m(5730)=m_{0} / 2$ and solve the equation for k.

$$
\begin{gathered}
m(5730)=\frac{m_{0}}{2} \\
m_{0} e^{-k(5730)}=\frac{m_{0}}{2} \\
e^{-5730 k}=\frac{1}{2} \\
\ln e^{-5730 k}=\ln \frac{1}{2} \\
(-5730 k) \ln e=-\ln 2 \\
k=\frac{\ln 2}{5730} \approx 0.000120968 \text { year }^{-1}
\end{gathered}
$$

As a result, equation (1) becomes

$$
\begin{aligned}
m(t) & =m_{0} e^{-\left(\frac{\ln 2}{5730}\right) t} \\
& =m_{0} e^{\ln 2^{-t / 5730}} \\
& =m_{0}(2)^{-t / 5730} .
\end{aligned}
$$

The fraction of ${ }^{14} \mathrm{C}$ remaining today after 68 million years is

$$
\frac{m\left(68 \times 10^{6}\right)}{m_{0}}=2^{-\left(68 \times 10^{6}\right) / 5730} \approx \frac{1}{2^{11867.4}} \approx 0 .
$$

To find how long it takes for the ${ }^{14} \mathrm{C}$ to reduce to 0.1% of its original amount, set $m(t)=0.001 m_{0}$ and solve the equation for t.

$$
\begin{gathered}
m(t)=0.001 m_{0} \\
m_{0}(2)^{-t / 5730}=0.001 m_{0} \\
2^{-t / 5730}=0.001 \\
\ln 2^{-t / 5730}=\ln 0.001 \\
\left(-\frac{t}{5730}\right) \ln 2=\ln 0.001 \\
t=-\frac{5730 \ln 0.001}{\ln 2} \approx 57103.9 \text { years }
\end{gathered}
$$

This is the maximum age of a fossil that can be dated with ${ }^{14} \mathrm{C}$ if the minimum detectable amount is 0.1%.

